Skip to main content

Look-Aside Cache for MongoDB

For an interactive Jupyter notebook experience: Launch in Binder#

This is a sample notebook for using Aerospike as a read/look-aside cache#

  • This notebook demonstrates the use of Aerospike as a cache using Mongo as another primary datastore
  • It is required to run Mongo as a separte container using docker run --name some-mongo -d mongo:latest

To test: Run the get_data(key, value) method once - to fetch from Mongo and populate Aerospike

Another run will fetch the data from Aerospike cache

Ensure that the Aerospike Database is running#

!asd >& /dev/null!pgrep -x asd >/dev/null && echo "Aerospike database is running!" || echo "**Aerospike database is not running!**"


Aerospike database is running!

Import all dependencies#

import aerospikeimport pymongofrom pymongo import MongoClientimport sys

Configure the clients#

The configuration is for

  • Aerospike database running on port 3000 of localhost (IP which is the default.
  • Mongo running in a separate container whose IP can be found by docker inspect <containerid> | grep -i ipaddress

Modify config if your environment is different (Aerospike database running on a different host or different port).

# Define a few constants
#Aerospike configurationaero_config = {  'hosts': [ (AEROSPIKE_HOST, AEROSPIKE_PORT) ]}try:  aero_client = aerospike.client(aero_config).connect()except:  print("Failed to connect to the cluster with", aero_config['hosts'])  sys.exit(1)print("Connected to Aerospike")
#Mongo configurationtry:    mongo_client = MongoClient(MONGO_HOST, MONGO_PORT)    print("Connected to Mongo")except:    print("Failed to connect to Mongo")    sys.exit(1)


Connected to AerospikeConnected to Mongo

Store data in Mongo and clear the keys in Aerospike if any#

db = mongo_client[MONGO_DB]collection = db[MONGO_COLLECTION]
def store_data(data_id, data):    m_data = {data_id: data}    collection.drop()    aero_key = ('test', 'demo', data_id)    #aero_client.remove(aero_key)    post_id = collection.insert_one(m_data)store_data("key", "value")

Fetch the data. In this instance we are using a simple key value pair.#

If the data exists in the cache it is returned, if not data is read from Mongo, put in the cache and then returned

def get_data(data_id, data):    aero_key = (AEROSPIKE_NAMESPACE, AEROSPIKE_SET, data_id)    #aero_client.remove(aero_key)    data_check = aero_client.exists(aero_key)    if data_check[1]:        (key, metadata, record) = aero_client.get(aero_key)        print("Data retrieved from Aerospike cache")        print("Record::: {} {}".format(data_id, record['value']))    else:        mongo_data = collection.find_one({data_id: data})        print("Data not present in Aerospike cache, retrieved from mongo {}".format(mongo_data))        aero_client.put(aero_key, {'value': mongo_data[data_id]})get_data("key", "value")


Data retrieved from Aerospike cacheRecord::: key value